Vertex (Lie) algebras in higher dimensions

نویسنده

  • Bojko Bakalov
چکیده

Vertex algebras provide an axiomatic algebraic description of the operator product expansion (OPE) of chiral fields in 2-dimensional conformal field theory. Vertex Lie algebras (= Lie conformal algebras) encode the singular part of the OPE, or, equivalently, the commutators of chiral fields. We discuss generalizations of vertex algebras and vertex Lie algebras, which are relevant for higher-dimensional quantum field theory. 1 Vertex algebras and Lie conformal algebras In the theory of vertex algebras [1, 2, 3], the (quantum) fields are linear maps from V to V [[z]][z−1], where z is a formal variable. They can be viewed as formal series a(z) = ∑n∈Z a(n) z−n−1 with a(n) ∈ EndV such that a(n)b = 0 for n large enough. Let Res a(z) = a(0); then the modes of a(z) are given by a(n) = Res z na(z). The locality condition for two fields (z−w)ab [a(z),b(w)] = 0, Nab ∈ N is equivalent to the commutator formula [a(z),b(w)] = Nab−1 ∑ j=0 c j(w)∂ j wδ (z−w)/ j! for some new fields c j(w), where δ (z−w) is the formal delta-function (see [2]). The operator product expansion (OPE) can be written symbolically a(z)b(w) = ∑ j∈Z c j(w)(z−w) − j−1 (see [2] for a rigorous treatment). The new field c j is called the j-th product of a,b and is denoted a( j)b. The Wick product (= normally ordered product)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing models of vertex algebras in higher dimensions

Vertex algebras in higher dimensions correspond to models of Quantum Field Theory (Wightman axioms) with Global Conformal Invariance. We review how such a vertex algebra can be generated from a collection of local fields, or from a vertex Lie algebra. The one-dimensional restriction of a vertex algebra in higher dimensions to a time-like line gives a chiral vertex algebra endowed with an action...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Vertex-algebraic Structure of the Principal Subspaces of Level One Modules for the Untwisted Affine Lie Algebras

Generalizing some of our earlier work, we prove natural presentations of the principal subspaces of the level one standard modules for the untwisted affine Lie algebras of types A, D and E, and also of certain related spaces. As a consequence, we obtain a canonical complete set of recursions (q-difference equations) for the (multi-)graded dimensions of these spaces, and we derive their graded d...

متن کامل

Relations for Annihilating Fields of Standard Modules for Affine Lie Algebras

J. Lepowsky and R. L. Wilson initiated the approach to combinatorial Rogers-Ramanujan type identities via the vertex operator constructions of representations of affine Lie algebras. In a joint work with Arne Meurman this approach is developed further in the framework of vertex operator algebras. The main ingredients of that construction are defining relations for standard modules and relations...

متن کامل

Vertex Lie algebras, vertex Poisson algebras and vertex algebras

The notions of vertex Lie algebra and vertex Poisson algebra are presented and connections among vertex Lie algebras, vertex Poisson algebras and vertex algebras are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006